

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

Subject with Code: DIGITAL SIGNAL PROCESSING (18EC0414) Course & Branch: B.Tech – ECE& EEE

Year & Sem: III-B.Tech. & I-Sem.

Regulation: R18

UNIT –I

DISCRETE FOURIER TRANSFORM (DFT) & FAST FOURIER TRANSFORM (FFT)

1	a Draw the basic butterfly structure for DIT-FFT & DIF-FFT algorithms.	[L1][CO1]	[2M]
	b Find the DFT of a sequence $x(n) = \{1,1,0,0\}$	[L1][CO1]	[2M]
	c Distinguish between linear and circular convolution	[L4][CO1]	[2M]
	d State the difference between overlap save and overlap add method	[L5][CO1]	[2M]
	e What is the relationship between Fourier series coefficients of a periodic sequence and DFT?	[L1][CO1]	[2M]
2	a) State and prove the following properties of DFT	[L5][CO1]	[7 M]
	b) Compare DFT and FFT algorithms.	[L5][CO1]	[3 M]
3	Compute 8-point DFT of the sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using radix-2 DIT-FFT Algorithm.	[L5][CO1]	[10 M]
4	a) Explain decimation in time FFT algorithm with necessary expressions.	[L5][CO1]	[7 M]
	b) Compare radix-2 DIT-FFT and DIF-FFT algorithms.	[L5][CO1]	[3M]
5	Determine the 8 point DFT of the sequence $x(n) = \{1,1,1,1,1,1,0,0\}$	[L5][CO1]	[10M]
6	a) Identify the output $y(n)$ of a filter whose impulse response is $h(n)=[1,1,1]$ and input signal $x(n)=[3,-1,0,1,3,2,0,1,2,1]$ using overlap add method.	[L2][CO1]	[5M]
	b) Compute the IDFT of a sequence $Y(K) = \{1,0,1,0\}$	[L5][CO1]	[5M]
7	a) Explain decimation in frequency FFT algorithm with necessary expressions.	[L5][CO1]	[7 M]
	b) Summarize the differences and similarities between DIF & DIT FFT algorithms?	[L5][CO1]	[3 M]
8	a) Compute the DFT of a sequence $x(n) = \{1, 1, 0, 0\}$	[L5][CO1]	[5 M]
	b) Identify the output $y(n)$ of a filter whose impulse response is $h(n)=[1,2]$ and input signal $x(n)=[1,2,-1,2,3,-2,-3,-1,1,1,2,-1]$ using overlap save method	[L2][CO1]	[5 M]
9	Compute 8-point DFT of the sequence $x(n) = \{0,1,2,3,4,5,6,7\}$ using radix-2 DIF-FFT Algorithm.	[L5][CO1]	[10 M]
10	a) Compute the 4-point DFT of the sequence and plot magnitude and phase response $x(n) = \{1; 0 \le n \le 2\}$ $= 0 : otherwise$	[L5][CO1]	[7 M]
	b) Explain the relationship between DFT to the Z-Transform	[L5][CO1]	[3 M]
11	Compute IDFT of the sequence x(n)= {7, -0.707-j0.707, -j, 0.707-j0.707,1, 0.707+j0.707, j, - 0.707+j0.707} using DIT FFT algorithm.	[L5][CO1]	[10 M]

UNIT –II INFINITE IMPULSE RESPONSE FILTERS & REALIZATION OF IIR FILTER

1	a What is necessity of Pre-warping?	[L1][CO2]	[2M]
	b Describe impulse invariant method of designing IIR filter.	[L1][CO2]	[2M]
	c What is the main disadvantage of direct form realization?	[L1][CO3]	[2M]
	d What are the properties of bilinear transformation?	[L1][CO2]	[2M]
	e What are the advantage and disadvantage of bilinear transformation?	[L1][CO2]	[2M]
2	a) For the analog transfer function $H(s) = \frac{2}{1000}$, Determine $H(z)$ using	[L6][CO2]	[5 M]
	impulse invariance method Assume $T=1$ Sec		
	b) Apply Bilinear transformation to $H(s) = \frac{2}{2}$ with T-1 Sec and find $H(z)$	[L3][CO2]	[5 M]
	b) Apply Diffical transformation to $\Pi(S) = \frac{1}{(S+1)(S+2)}$ with $\Gamma = \Gamma$ See and $\Pi(L)$.		 [5]N(1)
3	a) An L11 System is described by the difference equation y(n)+a,y(n-1)-y(n)+b,y(n-1). Determine its direct form L structure	[L5][C03]	
	$y(n) + a_1 y(n-1) - x(n) + b_1 x(n-1)$. Determine its uncer form 1 structure.		
	b) Construct the cascade form structure of the system with difference equation	[L3][CO2]	[6 M]
	$y(n) = \frac{3}{2}y(n-1) - \frac{1}{2}y(n-2) + x(n) + \frac{1}{2}x(n-1)$		
4	a) Ear the sizer area if action determine the order of the filter by Duttermorth		
4	a) For the given specification, determine the order of the filter by Butterworth model		
	$\alpha p = 1 dB$ $\alpha s = 30 dB$		
	$\dot{\Omega p} = 200 \text{ rad} / \text{sec}$ $\Omega s = 600 \text{ rad} / \text{sec}.$		
	b) Explain the steps to be followed to design an analog chebyshev low pass filter	[L5][CO1]	[4 M]
5	a) Construct the parallel form structure of the system with difference equation	[L3][CO1]	[7 M]
	$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$		
	b) List the Butterworth polynomials for order 1 to 5 and give its significance	[L4][CO1]	[3 M]
6	a) Explain the steps to be followed to design an analog Butterworth filter.	[L5][CO1]	[3 M]
	b) For the given specifications. Determine $H(s)$ using Chebyshev	[[5][CO2]	[7 M]
	approximation for the $\alpha p = 3 \text{ dB}$ and $\alpha s = 16 \text{ dB}$ fp=1 KHz and fs= 2 KHz		[/ ייד]
7	Apply the bilinear transformation, to design a high pass filter, monotonic in pass	[L3][CO2]	[10M]
	band with cut off frequency of 1000 Hz and down 10dB at 350 Hz. the sampling		
	frequency is 5000Hz.		
8	a) Sketch the direct form I and direct form II realization of the LTI System	[L3][CO3]	[6 M]
	$u(n) = \frac{3}{2}u(n-1) + \frac{3}{2}u(n-2) + \frac{1}{2}u(n-2) + v(n) + 2v(n-1)$		
	$y(n) = -\frac{1}{8}y(n-1) + \frac{1}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1)$		
	b) An LTI System is described by the governing equation	[L3][CO3]	[4 M]
	$y(n)+a_1y(n-1)=x(n)+b_1x(n-1)$. Realize it in direct form II structure		
9	a) Determine the order of analog Butterworth filter that has 2 dB passband	[L5][CO2]	[3 M]
	attenuation at a frequency of 20 rad/sec and atleast 10 dB stopband attenuation at 20 rad/sec		
	$\frac{3011}{100}$ b) Determine the transfer function H(s) for analog Rutterworth filter that has $2 dR$	[[5][CO2]	[7 M]
	passband attenuation at a frequency of 20 rad/sec and atleast 10 dB storband		ני זיאן
	attenuation at 30 rad/sec.		
10	Determine an analog chebyshev filter transfer function that satisfies the	[L5][CO2]	[10 M]
	constraints		
	$\frac{1}{\sqrt{2}} \le H(j\Omega) \le 1$; $0 \le \Omega \le 2$		
	$ H(j\Omega) < 0.1 ; \Omega \ge 4$		
11	a) Describe impulse invariant method of designing IIR filter.	[L3][CO2]	[3M]
	b) Explain the different types of IIR filter realization with suitable example.	[L5][CO3]	[7 M]

UNIT –III FINITE IMPULSE RESPONSE FILTERS & REALIZATION OF FIR FILTER

	a Define Gibb's phenomenon	1	[2M]
		[I_1][CO2]	[=:]
	b State and explain the properties of FIR filters	[L1][C02]	[2M]
	c What are the desirable characteristics of windows?	[L1][C02]	[2M]
	d What is the basis for Equipression method of EID filter design? Why	[L1][C02]	[211]
	truncation is necessary?		
	e What is recursive and non-recursive realization?	[L1][CO3]	[2M]
2	a) Explain briefly how zeros are located in FIR Filter?	[L5][C01]	[4 M]
	b) Summarize the advantages and disadvantages of FIR Filters	[L4][C01]	[3 M]
	c) List the desirable characteristics of the window	[L1][C01]	[3 M]
3	Design an ideal High pass filter with the frequency response	[L6	[10M]
	$H_{2}(\rho^{jw}) - 1 for \frac{\pi}{-} \leq \omega \leq \pi$][CO3]	
	$\Pi_d(c) = 1 \int \sigma \frac{1}{4} \leq \omega \leq n$		
	$=0 \qquad \omega \leq \frac{\pi}{4}$		
	Find the values of $h(n)$ for N=11. Find $H(z)$ and plot the magnitude response		
4	a) Explain the Fourier Series method of Designing FIR Filters.	[L5][CO3]	[5 M]
	b) Distinguish between FIR and IIR Filter.	[L5][CO3]	[5 M]
_	Design an ideal Low pass filter with a frequency response π	[L6][CO3]	[10M]
5	$H_d(e^{jw}) = 1$ for $-\frac{n}{2} \le \omega \le \frac{n}{2}$		
	-0 $\frac{\pi}{2} < \omega < \pi$		
	$_{2} = 100 = 2$ Find the values of h(n) for N-11 Find H(z) and plot the magnitude response		
6	The the values of $n(n)$ for $N-11$. The $n(z)$ and plot the magnitude response Determine the coefficients of a linear phase EIR filter of length $N-15$ which has a	[I_5][CO3]	[10 M]
U	symmetric unit sample response and a frequency response that satisfies the		
	conditions		
	$H(2 \pi k/15) = 1$ for k=0 1 2 3		
	= 0 for k=4, 5, 6, 7		
7	a. Determine the Direct form realization of system function	[L5][CO3]	[5 M]
	$H(z) = 1 + 2 z^{-1} - 3 z^{-2} - 4 z^{-3} + 5 z^{-4}$		
	b. Obtain the linear phase realization of the system function	[L5][CO3]	[5 M]
	$H(z) = \frac{1}{2} + \frac{1}{3} z^{-1} + z^{-2} + \frac{1}{4} z^{-3} + z^{-4} + \frac{1}{3} z^{-5} + \frac{1}{2} z^{-6}$		
8	Determine the coefficients $h(n)$ of a linear phase FIR filter of length $M = 15$ which	[L5][CO3]	[10M]
	has a symmetric unit sample response and a frequency response that satisfies the		
	H(2 $\pi k/15$) = 1 for k = 0, 1, 2, 3		
	-0.4 for k - 4		
	= 0.1101 K = 1 = 0 for k = 5.6.7		
9	(a) Explain the design steps of FIR filters using windows.	[L5][CO3]	[5 M]
	(b)State and explain the properties of FIR filters. State their importance.	[L5][CO3]	[5 M]
10	(a) Construct the cascade realization of FIR Filters for the function	[[.6][[03]	- [5 M]
	$H(z) = (1 + 2 z^{-1} - z^{-2}) (1 + z^{-1} - z^{-2})$		[2 171]
	(b) What is linear phase filter? What are the conditions to be satisfied by the	[L1][CO3]	[5 M]
	impulse response of an FIR system in order to have a linear phase?		
11	Design an ideal Band pass filter with the frequency response	[L6][CO3]	[10M]
	$H_d(e^{jw}) = 1$ for $\frac{\pi}{-} \leq \omega < \frac{3\pi}{-}$		
	4 - 0 Otherwise		
	$= 0 \qquad \text{Otherwise}$ Find the values of h(n) for N=11 Find H(n) and plot the frequency response		
	The me values of $n(n)$ for $n-11$. Find $n(z)$ and plot the frequency response		

UNIT –IV FINITE WORD LENGTH EFFECTS

1	a What is Dead band of a filter?	[L1][CO5]	[2M]
	b How to prevent limit cycle oscillations.	[L1][CO5]	[2M]
	c Compare fixed and floating-point arithmetic.	[L4][CO5]	[2M]
	d What is meant by input quantization error?	[L1][CO5]	[2M]
	e What is the effect of quantization on pole location?	[L1][CO5]	[2M]
2	a. Represent the following numbers in floating point format with five bits for	[L3][CO5]	[5 M]
	mantissa and three bits for exponent. a) 7_{10} b) 0.25_{10} c) -7_{10} d) -0.25_{10}		
	b. Discuss the various common methods of quantization.	[L2][CO5]	[5 M]
3	a. What is quantization of analog signals? Derive the expression for the quantization	[L1][CO5]	[5 M]
	error.		
	b. Explain in detail the effects of input quantization error.	[L5][CO5]	[5 M]
4	a. How to prevent limit cycle oscillations? Explain.	[L1][CO5]	[5 M]
	b. What is a dead band of a filter? Explain.	[L1][CO5]	[5 M]
5	a Compare floating point with fixed point arithmetic	[I_5][CO5]	[5 M]
-	h What is quantization poins? Derive the expression for quantization poins around		
	b. What is quantization noise? Derive the expression for quantization noise power.		[5 M]
6	(a)Tabulate the Quantization error ranges of truncation and rounding for the various number representations	[L2][CO5]	[5 M]
	(b) Draw and explain the power density functions for truncation and rounding.	[L5][CO5]	[5 M]
7	Explain the characteristics of limit cycle oscillation with respect to the system	[L5][CO5]	[10 M]
	described by the difference equation $y(n) = 0.7 y(n-1) + x(n)$. Determine the		
	dead band range of the system.		
0	The output signal of an A/D converter is passed through a first order low pass filter with transfer function $H(Z) = (1 \text{ a}) f(z \text{ a})$ for $0 < z < 1$. Find the steady state output noise	[L1][CO5]	[10 M]
8	power due to quantization at the output of the digital filter.		
9	(a) With relevant expressions and Quantization noise model discuss steady state input	[L2][CO5]	[5 M]
	noise power.		
	(b) Discuss about the steady state output noise power.	[L2][CO5]	[2M]
10	a. Discuss in detail the errors resulting from rounding and truncation.	[L2][CO5]	[5 M]
	b. Summarize the various forms of representing the numbers in digital systems	[L2][C05]	[5 M]
11	Explain the characteristics of a limit cycle oscillation with respect to the system described by the equation $y(n)=0.95y(n-1) + y(n)$ when the product is quantized to 5 bits	[L5][CO5]	[10M]
	by rounding. The system is excited by an input $x(n)=0.75$ for $n=0$ and $x(n)=0$ for $n\neq 0$		
	Also, determine the dead band of the filter.		

UNIT –V INTRODUCTION TO DIGITAL SIGNAL PROCESSORS

1	a Mention the applications of PDSP's.	[L1][CO6]	[2M]
	b What are the different buses of TMS320C5X?	[L1][CO6]	[2M]
	c Draw the block diagram of VonNumann Architecture	[L1][CO6]	[2M]
	d What are the advantages and disadvantages of VLIW architecture?	[L1][CO6]	[2M]
	e Define Pipelining?	[L1][CO6]	[2M]
2	With a neat sketch explain the architecture of TMS 320C50 processor.	[L5][CO6]	[10 M]
3	(a)What are the different buses of TMS320C5X and their functions?	[L1][CO6]	[5 M]
	(b) Brief about the overview of digital signal processors.	[L4][CO6]	[5 M]
4	(a) List the functional units in Central Processing Unit of 5X.	[L1][CO6]	[5 M]
	(b) Explain the function of CALU in detail.	[L5][CO6]	[5 M]
5	(a) What is meant by memory mapped register? How is it different from a memory?	[L1][CO6]	[5 M]
	(b) Discuss the various Circular Buffer Registers in detail.	[L2][CO6]	[5 M]
6	(a) List status register bits of 5X and their functions.	[L1][CO6]	[5 M]
	(b) Discuss the Block repeat registers (RPTC, BRCR, PASR and PAER).	[L2][CO6]	[5 M]
7	(a) List the various on-chip peripherals interfaced with 5X.	[L1][CO6]	[5 M]
	(b) Explain the function of Serial port interface.	[L5][CO6]	[5 M]
8	(a)Categories the various interrupt types supported by 5X?	[L2][CO6]	[5 M]
	(b) Draw and explain the architecture of von Neumann.	[L5][CO6]	[5 M]
9	(a) Distinguish between the dual-access RAM and single-access RAM used in the on-chip memory of 5X.	[L5][CO6]	[5 M]
	(b) Discuss the advantages and disadvantages of VLIW architecture.	[L1][CO6]	[5 M]
10	(a) Explain in detail the application of PDSP's in the field of communication systems.	[L5][CO6]	[5 M]
	(b) Discuss the role of PDSP in multimedia applications.	[L6][CO6]	[5 M]
11	(a)List the on-chip memory in 5X and explain their functions.	[L1][CO6]	[5 M]
	(b) Compare the various architectures employed in designing a digital signal processor.	[L5][CO6]	[5 M]

Prepared by:

1. Dr. T. SENTHILKUMAR

Professor/ECE

2. Dr.P.G.GOPINATH

Professor/ECE

3. Mrs.P.SAIKUSUMA

Asst.Prof/ECE